

The Impact of Cultivations on Weed Control in Cereals

Mark Ballingall SRUC Applied Practice Team

Area of arable land under different cultivation regimes, source Defra

From this

Good ploughing inverts grass seeds- rot or predated

To this

Minimal tillage favours grass weeds as retains seed close to the surface

- Introduction of paraquat and then glyphosate
- Massive increase in autumn drilled crops
- Shorter rotations; earlier drilling
- Winter wheat became the most profitable crop
- As farming systems evolved so too did the weeds

What happened next ?

- An increasing reliance on herbicides to control changes in grass weeds:
- Black-grass rapidly became the dominant weed in arable rotations in England
- Wild oats became the next dominant weed
- Annual meadow-grass too

Herbicide use for grass-weed control in cereals in Great Britain in the 2006 cropping year, in terms of spray hectares (CSL, 2006).

Number of available pesticide products 1998 - 2008 (slide courtesy of ECPA)

Average numbers of Alopecurus myosuroides plants m2

Impact of Tillage regimes following ploughing, non-inversion cultivation and direct drilling,

based on -analysis of data from 25 field experiments. (P J W LUTMAN*, S R MOSS*, S COOK† & S J WELHAM)

	Noninversion	Ploughing	Direct	SED
	cultivation		drilling	(38 d.f.)
Log10 transformed mean (plants/m2	118	3 37	137	0.045
% Change		-69	16	

Yield loss response curves for black-grass (A. myosuroides) and wild-oat (A. fatua) (from Wilson & Wright 1990)

The influence of stubble and winter cultivations on the number of A. fatua seedlings and seeds (in the soil) in June (from Cussans et al., 1979)

SRUC

September stubble cultivation	Winter cultivation	Seedlings/m ²	Seed/m ²
Yes	Plough	156	256
No	Plough	80	138
Yes	Tine	221	283
No	Tine	110	56

Long term Black –Grass Trial, Lincolnshire S K COOK1, J H CLARKE1, Z S HUGHES2, S R MOSS2 the Sustainable Arable LINK (LK0923)

Managed – 2001 plough; 2002 shallow; 2003 delayed shallow tine, same drill date

SEERAD—funded reduced tillage trial in Midlothian 2002, (extract from SAC Technical note 580)

Table 1: Impact of reduced tillage treatment on weeds in winter wheat in trial in Midlothian. Not treated with herbicide. Weed number/m2 on 9 December 2002

	Annual meadow- grass	Volunteer oilseed rape	Common chickweed	Forget- me-not	Field pansy
Plough	548	24	44	4	36
Reduced tillage	1168	0	544	0	0

SEERAD–funded reduced tillage trial in Midlothian 2002, (extract from SAC Technical note 580)

Table 3: % Eyespot on stem base

Year	2002	2003	2004	Average
Reduced tillage	41.7	30.6	20.3	31
Ploughed	39.0	35.6	32.6	37

Table 4: Impact of reduced tillage on crop yields (t/ha)

Year	2002	2003	2004	Average
Reduced tillage	10.4	8.9	9.5	9.6
Ploughed	8.9	9.1	8.2	8.7

Back to this

Rotational ploughing reduces the risk of grass weeds by burying shed seeds

How ploughing could fit in to a Rotation ?

WW = winter wheat WOSR = winter oilseed rape

Current practice

Suggested improvements

Integrated Control Gives the best results !

Fig 2: An example of potential cumulative benefit of cultural control: sterile brome

